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Objectives
Investigate static functional connectivity of the hippocampus
Investigate dynamic functional connectivity of the hippocampus
Investigate how cortical parcellation choice impacts data-driven hippocampal 
parcellation 

How to view this poster: this poster is arranged vertically and each panel contains a complete section or result.  Scroll down to move from 
objectives, to methods, to results.  In the results section, large bold font conveys the take home message.  Fine print gives methodological 
details.
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Results
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Choice of parcellation scheme leads to quantifiable variation in hippocampal clusters derived from RSFC patterns.  
Different connectivity methods (static vs dynamic) show low agreement.

Figure 1: Adjusted rand index for clusterings of the right hippocampus for each pairwise combination of connectivity method (static, dynamic) and parcellation scheme.  Within a connectivity method, choice of 
atlas parcellation leads to spatial variability of output clusters, evidence by low (<0.6) adjusted rand index.  This variability increased with the number of output clusters.  Across metrics (static vs dynamic), ARI is 
low - suggesting static and dynamic approaches capture complementary variation. We analyzed 2 to 4 component clusters to observe how ARI varies with increasing granularity.

Hippocampal clusters show static RSFC variation along predominantly along the anterior-posterior axis, but also along 
the medial-lateral axis in the hippocampal head.  Patterns across parcellations are qualitatively similar.

Figure 2: Superior (top row) and inferior (bottom row) views of 3 cluster opNMF solution for each of the Gordon (left column), Yeo (middle), and Glasser (right) atlases. Most prominent is differentiation along the 
anterior-posterior axis, denoted by the red (posterior) vs blue (anterior) clusters.  In the head of the hippocampus, superior-inferior and lateral-medial separation occurs, with the green cluster consistently lying 
infero-meial to the blue cluster.  Across parcellation schemes, qualitative conclusions on presence/absence of anterior-posterior differentiation, and separation of the hippocampal head, are consistent.  The most 
prominent visual difference exists in the extension of the blue cluster across most of the lateral extent of the hippocampus in results derived using Yeo and Glasser atlases in comparison to the Gordon atlas.

Hippocampal clusters derived from standard deviation of RSFC windows show minimal differntiation along the anterior-
posterior axis.  Superior-inferior and lateral-medial seperation is localized to the anterior hippocampus, suggesting more 
variability in RSFC patterns here.

Measures of static FC vary along all axes of the hippocampus.  While anterior-
posterior differences are prominent, superior-inferior and lateral-medial speration 
can be identified in the hippocampal head.

Dynamic FC, measured as the standard deviation of measured RSFC correlations, is 
variable in the hippocampal head.  Anterior-posterior differences are not as 
prominent as when using static FC.

Choice of cortical parcellation has a quantifiable impact on spatial clusters.  While 
similar qualitative conclusions can be drawn, localized, voxel-wise comparisons can 
be significantly influenced.  This effect was most visible in the hippocampal body.
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Data: We obtained extensively processed resting state frmi (2mm3) data from 280 unrelated subjects of the Human Connectome Project [1,2] .  Cortical 
regions were defined using one of three parcellations (Glasser [3], Gordon [4], Yeo [5]) in order to track effects of region definition. HC voxels were 
defined using the Harvard-Oxford probability atlas [6].

Functional Connectivity: For static FC, we computed Fisher-z transformed HC-cortical correlation matrices for each subject and averaged across the 
group.  For dynamic FC, we used a tapered sliding window (window size=100 TRs, step=3 TRs, sigma=20TRs, 1 TR=720ms) to compute windowed 
correlation matrices for each subject.  We computed the standard deviation connectivity of each hc voxel - cortical region, and averaged each subjects 
standard deviation matrix to create a group average.

Parcellation: Each of 6 computed correlation matrices (3 atlases x 2 FC methods) was clustered using orthogonal projective non-negative matrix 
factorization (OPNMF) [7,8,9]. OPNMF decomposes an input matrix (m x n) into a component matrix W (m x k) and weight matrix H (k x n), k=#of 
components, m = HC voxels, n = cortical regions (static) or HC voxels (dynamic). The component matrix W describes component scores for each HC voxel. 
Clusters are assigned with a winner take all approach across component scores. We analyze k=2-4 component solutions currently and compare clusterings 
using adjusted rand index (ARI).
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Figure 3: Superior (top row) and inferior (bottom row) views of 3 cluster opNMF solution for each of the Gordon (left column), Yeo (middle), and Glasser (right) atlases, using group averaged standard deviations 
across windows as input. Unlike static FC derived parcellations, minimal anterior-posterior differentiation is found.  Superior-inferior and medial-lateral differentitation is localized to the hippocampal head, 
suggesting the majority of variation in changes in connectivity over time is localized to this region.
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